# Molecular taxonomy of recently described *Phytophthora* and *Pythium*

Dr. Lassaad Belbahri

### **Declining Polish forests**

#### Alnus glutinosa, Kolo, Poland.



# **Direct PCR, DNA barcoding**

#### **Collaboration with FASTERIS SA (Geneva)**



# Single tube nested PCR for sensitive detection of oomycetes



# ARISA Analysis of oomycete infected *Rhododendron* leaves



# ITS rDNA PCR Amplification of oomycete community from soil DNA



# ARISA analysis of oomycete community from soil DNA



# Evolution rate of new species discovery during time







# Morphological description : *Ph. polonica*



# Morphological description: Py. recalcitrans



Hypha and hyphal swellings



Appressoria



Antheridia



Oospore

### Phylogenetic analysis of *Phytophthora* spp.

431] Ph. infestans haplotype IIa

Phylogenetic analysis based on four concatenated genes (β-tubuline, EF1-α, NADH1 and COX1), induced by Maximum Likelihood (PhyML)



*Ph. sylvatica* sp. nov *Ph. hungarica* sp. nov

#### Phylogenetic analysis of *Pythium* spp.

Unrooted phylogenetic analysis based on Internal Transcribed Spacers 1 and 2 induced by Bayesian Inference (MrBayes v.3.1.2)



#### Towards a redefinition of oomycete genera



# Ph. hedraiandra



*Ph. hedraiandra*, a species with high hybridization potential spreading on multiple hosts.



### Ph. ramorum detection by real time PCR





#### Ph. alni detection by real time PCR



Ph. alni subsp. alni Ph. alni subsp. multiformis Ph. alni subsp. uniformis



Ph. alni subsp. alni Ph. alni subsp. multiformis



Ph. alni subsp. alni Ph. alni subsp. uniformis

### Detection of Py. spp. and Ph. spp. by microarray



### Ph. ramorum, tissue colonization



*P. ramorum* in *Rhododendron* cortex tissue, chlamydospores with white-yellow autofluorescence in cortex of necrotic *Rhododendron* stem Tissue of infected *Rhododendron* leaves with *Ph. ramorum* structures, hyphae with zoosporangia growing out of stomata on discolored leaf surface (vital staining with FUN® 1, Molecular Probes), zoospore production is induced, when infected leaves were moistened and kept at low temperatures (7°C)



### Ph. ramorum, Genetic transformation



Transgenic *Ph. ramorum* strain BBA26/02-4: CLSM micrographs indicating GFP expression in germinating cysts. Left: transmission image Right: GFP signals





Transgenic *Ph. ramorum* strain BBA9/95\_6G: CLSM micrographs showing GFP expression in protoplasm of zoosporangia and hyphae, yellow signals: natural *Ph. ramorum* autofluorescence in some hyphae, sporangium wall, base and pedicel, GFP signals were amplified with Alexa Fluor 488<sup>®</sup>labelled anti GFP antibodies (Molecular Probes)

# Genomic organisation of virulence factors in oomycete genomes



#### **Evolutionary lines of oomycete virulence factors**



# Outlook

Diversity of oomycete species using non culture based techniques

Reinforcing environmental monitoring tools (Molecular toolbox)

Evolutionary history of main virulence factors

Linking genetic phylogeny to morphology

# **Special Thanks To:**

Steve Woodward Eduardo Moralejo Enrique Descals Jozef Bakonyi

# Thanks for your attention